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1. Background and Introduction 

 

1.1 Molecular and cellular biology have seen an explosive growth of data 

The fields of molecular and cellular biology have seen rapid growth of publicly available data over the past 

three decades. Three experimental methodologies have driven this growth. Next-generation sequencing 

(NGS), in which short DNA fragments are sequenced in a high-throughput manner. Mass Spectrometry 

(MS) through which the composition and conformational dispositions of proteins and metabolites can be 

ascertained. And X-ray crystallography that allows the three-dimensional structure of biomolecules to be 

determined. There are 5 million samples available from NGS from 500 different species in the GEO 

database. There are some five billion protein mass spectra available from the ProteomeXchange 

consortium databases and two billion metabolite spectra from GNPS and MetaboLights databases. And 

140,000 biomolecular structures available in the Protein Data Bank (PDB), the vast majority of which were 

determined by X-ray crystallography. Imaging and Cryo-EM techniques, which are seeing greater use, will 

fuel even faster data growth over the coming decade. 

Several factors led to the explosion of diverse, publicly available MCB data. First, while it was 

common for X-ray crystal structures to be made publicly available since the 1990’s, it wasn’t until the 2010’s 

that there was the widespread adoption of rules by journals and funding body’s requiring NGS and MS data 

be deposited in centralized repositories. NGS and MS data are now regularly deposited in the GEO1,2 and 

ProteomeXchange3,4 databases upon publication. Second, experimental techniques to generate such 

datasets have become common in biochemistry, molecular biology, and synthetic biology labs due to falling 

instrument costs and support from university core facilities, making the creation of large datasets routine5. 

Third, through clever sample preparation, NGS and MS assays have been adapted to measure a wide 

variety of cellular components and their interactions6, different aspects of subcellular processes7, and the 

relative timing of these processes8 in a high-throughput manner. These assays have diversified into 

hundreds of variants, each providing a snapshot of subcellular components, interactions, processes, and 

rates in some cases. 

The mosaic of molecular information now available is astonishing. Most aspects of the central 

dogma have been characterized by these assays. The location of each and every nucleosome along the 

S. cerevisiae genome9 has been measured from ChIP-seq10 (a nucleosome needs to move for a 

transcription factor to bind). The location of each and every transcription factor bound to a regulatory 

element along the genome11 is reported via ChIP-seq (a transcription factor must bind to control initiation 

by RNA polymerase). The location of each and every RNA-polymerase II molecule along the genome12 is 

determined by NET-Seq13 (RNA-polymerase synthesizes mRNA). For each transcribed mRNA, the fraction 

that is unspliced and immature (i.e., still containing introns) is measured by RNA-seq14. The location of each 

and every ‘scanning’ ribosome, ‘initiating’ ribosome, and ‘elongating’ ribosome, respectively, during 

translation is characterized by RCP-Seq15, TI-Seq16, and Ribo-seq17, respectively. The location of 

ribosomes that have collided with one another during translation is obtained from Disome-Seq18 (ribosome 

collisions promote mRNA degradation). The point during protein synthesis at which different protein 

biogenesis factors engage with the ribosome nascent chain complex – such as co-translationally acting 

chaperones and targeting factors – is measured via Sel-Ribo-seq19. And finally, the half-lives of all the 

mRNAs and proteins are available from RNA-Seq and MS and pulse-chase labeling20. 

NGS and MS assays can map the influence of differential molecular interactions between 

components taking part in subcellular processes, characterize connections between genotype and 

phenotype, as well as measure the rates of subcellular processes when coupled with high-throughput 

mutagenesis or pulse-chase strategies. For example, such assays have revealed the influences that the 5’ 

UTR sequence features and translation initiation regions have on translation efficiency21,22. In the case of 

transcription this approach was able to dissect the interactions most relevant to transcription factor 

binding23. When cellular phenotype is simultaneously measured, deep scanning mutagenesis has identified 

new mechanisms connecting genotype to phenotype24-26. While pulsing a cell with a small-molecule that 
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inhibits translation initiation, followed by a chase of NGS measurements at subsequent time points has 

allowed the rate of protein synthesis to be measured across highly expressed transcripts27. Thus, these 

datasets provide multiple levels of information at high resolution, in many cases at the level of individual 

nucleotides (in the case of NGS), individual amino acids (in the case of MS), or macromolecular interactions 

and cellular location (in the case of ‘spatial’ MS). 

 

1.2 Machine learning is accelerating discovery in molecular and cellular biology 

This growth of data has allowed computational, data-centric approaches, such as machine learning, to 

solve some long-standing problems in molecular and cellular biology28. A prime example is AlphaFold229. 

In this methodology, a novel machine learning approach that when combined with large protein sequence 

data sets and structures from the PDB makes accurate predictions of protein three-dimensional structures 

that rival the resolution of X-ray crystallographic structures29. Thus, AlphaFold2 has solved a grand 

challenge in the field of structural biology by predicting structure from sequence. Other examples include 

the automated identification of peptides and proteins in MS30 - doubling the number of annotated results in 

the ProteomeXchange, and the automated identification of cell types from high-throughput imaging. 

The continuing advances in machine learning hold the promise of accelerating insight and 

discovery across the fields of molecular and cellular biology through a combination of AI-human 

collaboration. Within this context there are challenges that must be addressed to maximally exploit these 

advances, including: (i) inferring cause from abstract machine learning knowledge representations; (ii) 

competency or fluency in ML concepts by MCB scientists; (iii) the transferability of ML models between 

different datasets and systems; and (iv) maximizing the ease with which ML-human collaboration can occur. 

 

1.3 Theory and modeling’s essential role in advancing molecular and cellular biology 

The promise of accelerating knowledge synthesis in MCB by machine learning is most welcome. However, 

to substantially enhance our understanding of major unsolved problems in MCB the results from machine 

learning have to be integrated with theory and biophysical models. The NSF MCB’s division codifies this in 

its mission statement to “support quantitative, mechanistic, predictive, and theory-driven fundamental 

research designed to promote understanding of complex living systems at the molecular, subcellular, and 

cellular levels”. Why this is valued comes from the physical sciences, where scientific understanding is best 

demonstrated if simple equations or ‘toy’ models can be created that capture the essential physics and 

chemistry underlying a phenomenon in complex biological systems. In this framework, explanatory power 

of a model is valued as much as its predictive power. The utility of theory and modeling in advancing the 

goals of MCB spans the field’s lifetime. In the 1940’s, mathematical reasoning allowed biophysicists to 

demonstrate that mutations occur spontaneously, and not as a response to selection pressures31. A 

theoretical physicist modeled and solved the structure of DNA32 and viral capsids33 in the 1950’s. In the 

1960’s Darwin’s theory of evolution by natural selection was codified mathematically, and the fields of 

theoretical ecology and mathematical epidemiology started34,35. Since then, theorists have advanced our 

understanding of how DNA, RNA, and proteins assemble and carry out their function across multiple spatial 

and time scales36, allowing us to understand the origins of various diseases37, and how information is 

relayed within and between cells38. This demonstrated value of theory and modeling in synthesizing diverse 

data to gain new insights means that theory and modeling will continue to play a central role in advancing 

discovery in MCB.  

This report summarizes the outcome of a workshop that brought together thirty scientists with diverse 

expertise including theoreticians, computationalists, and experimentalists. Participating were machine 

learning experts, biophysicists, molecular biologists, bioinformaticians, synthetic biologists, physicists, 

biophysical chemists, bioengineers, and genomic experts. This group was asked to identify grand 

challenges that are primed to be addressed through coordinated community-wide synthesis efforts, and 

how a future Synthesis Center could be organized to support the community in their synthesis efforts. 
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2. Classification Scheme for Types of Synthesis Questions 

Community-wide synthesis problems can be broken into three classes. Class 1 problems can be 

addressed through readily available data and established computational or theoretical tools, and constitute 

the ‘low-hanging fruit’ that are likely to have substantial impact with the least amount of effort. At the 

community level, Class 1 problems require scientific domain experts and computational experts to come 

together to collaborate in organizing, analyzing, and synthesizing the data, but the up-front cost of data 

organization and analyses are low. Class 2 problems are challenges that either have (i) data readily 

available for analysis, or (ii) computational tools readily available to apply, but not both. In Class 2 problems 

the data may be a challenge, for example, because it is dispersed across different databases or published 

datasets, or has inconsistent formatting across sources. Even if the data is readily available, in Class 2 

problems the computational analysis may be a challenge because existing computer codes or theoretical 

models need to be tailored to the problem at hand. In Class 2 problems, domain experts and computational 

experts will need to collaborate more extensively than in Class 1 problems to either gather or standardize 

the data, or handle modifications to analysis methodologies. In Class 3 problems, relevant data is not 

readily available and new computational and theoretical models must be created from scratch. “Not readily 

available” does not mean the data does not exist, but substantial effort must be invested to gather the data 

into a useful format for analysis. In addition, in Class 3 problems new computational methodologies and 

theoretical models must be implemented or created from scratch. Class 3 problems therefore require 

extensive collaboration between scientific domain and computational experts with progress timelines that 

may be difficult to estimate.  

  

3. Scientific Challenges that can be Accelerated by Community-wide Synthesis 

 

3.1 Understanding gene regulation through biophysical machine learning 

Machine learning is becoming central to computational biology, creating an opportunity for a new synthesis 

between machine learning and biophysically-motivated modeling approaches. These methods are not in 

conflict; rather, they have huge potential as complementary approaches, each informing the other. A 

synthesis center should bring together knowledge from the biophysics modeling community and the 

machine learning community to enable major scientific goals such as a complete model of genome function 

and how sequences lead to function. The outcome of such synthesis will enable solutions to outstanding 

problems in synthetic biology, interpretation of genetic variation, and cellular programming. It will lead to 

interpretable, causal models that can generate hypotheses, and incorporate the dynamic understanding of 

time-dependent processes that one gets from biophysical modeling but are often restricted to a few classes 

of problems. 

In the broadest sense, one challenge the proposed synthesis can address is, given the input 

information about a system, how can it be converted into the most precise and complete model of the 

system, without restricting this to any single modeling approach. A barrier to this integration is the lack of 

physical insight from machine learning models, which leads to reluctance to use ML methods in biophysical 

modeling. Improvements such as “visible” machine learning methods and models of uncertainty can 

decrease the barrier to communication between the two communities. In addition, training across disciplines 

can improve the compatibility of approaches and break through culture clashes. 

To merge the cultures of disparate fields, a synthesis center must bring together domain experts 

and encourage the theoreticians to engage with machine-learning experts. It must create structures around 

modeling methods and build understanding of the methods used to generate biological datasets so that 

computational researchers can work with data from many different experiments. This major effort in building 

collaborations would be enabled by a synthesis center that brings people together physically into one space 

and builds community around shared goals and complementary methods. We envision a synthesis center 

with a focus on bringing people together through workshops and semester-long programs that facilitate 
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scientists at all levels from different communities to engage deeply with how others address the same 

questions from entirely different perspectives. This could extend to pairs or trios of postdocs who work as 

teams at the synthesis center addressing specific challenges. 

Work at a synthesis center would attempt to address big questions in combining modeling 

approaches. What is the right model for each type of question? What are the newest best ideas? There are 

few or no textbooks on these topics; a synthesis center could compile a constantly evolving, updated set of 

best practices and best understanding. Creating, curating, and maintaining this as a central resource is an 

academic endeavor in its own right that could be incentivized with sabbaticals for senior faculty who want 

to contribute to a ‘textbook’ or integrated into the educational component of NSF CAREER proposals from 

affiliated junior faculty. 

A synthesis center could provide concrete resources as well as interaction. Genomics data are 

plentiful but it is essential to winnow through these to identify the best datasets. Cloud infrastructure can 

enable vast computational projects, but requires funding and infrastructure to interface with it. For instance, 

data sets that are currently downloaded by each research group could be stored in a shared, public location 

in the cloud, accessible without further data transfer costs. Access to GPUs, such as through Google’s 

Colab project, would let a wider range of groups reinterpret and model these data. Further, workshops could 

address challenges such as data sharing standards. 

Training is integral to the success of these goals, including both training in advanced methods and 

earlier training to ensure a diverse and qualified scientific workforce. Improving early training in computation 

is inherently equalizing, lowering barriers to those coming into research with existing computational skills 

or confidence. Supporting early university training in computational methods for people from different stem 

fields can improve the balance in who participates at later stages. The synthesis center could develop 

curriculum suggestions and training modules for undergraduate biology students to move into computation, 

as well as focused summer courses in machine learning for computational biology aimed at graduate and 

postdoctoral researchers. It will be critical to avoid self-selecting who participates in synthesis center 

activities, by being careful to recruit broadly, and by providing resources like childcare funding to broaden 

participation. Overall, integration of modeling approaches from machine learning and biophysics will rely 

on building the human resources that enable cross-disciplinary synthesis. 

 

3.2 Predicting protein function from sequence and environment 

The last several decades have produced an explosion of NGS and MS data that catalogs and characterizes 

the parts list of proteins in a given system. We now have the sequences and behavior of proteins from 

different species, organisms, and distinct individuals within a species. Over fifty years ago, the central 

dogma of molecular biology outlined a predictive, mechanistic understanding of information flow from 

genetics (DNA) to proteins (the amino acid sequence)39. With all of this data, a new question can be 

addressed: how does variation in sequence and environment affect protein function? Today, thanks to 

advances in machine learning, genomic databases, and the large number of structures in the PDB, we have 

the ability to accurately predict a structural model for the folded structure of a protein given only its amino-

acid sequence40. While incredibly important, structure alone does not define the function of a protein and 

phenotype of an organism or cell41. Small variations in sequence and environment - which feeds evolution, 

phenotypic diversity, and the mechanistic details of function - rarely changes the overall structure of a 

protein. Proteins, the molecular machines of life, cannot be thought of as a single static structure, but an 

ensemble of structures that interconvert to create function and contribute to phenotype42. Addressing this 

grand challenge will require a synthesis of data at many different scales, from biophysical studies to genetic 

and population studies.   

Diverse scientists representing all areas of MCB research can contribute to this challenge, 

spanning from detailed studies of individual proteins, their fluctuations and function, to high-throughput 

genetic studies. For example, in addition to the wealth of data in the BRENDA database43 (the 

comprehensive enzyme information system) that catalogs enzyme function and the biophysical parameters 
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that define an enzyme, recent developments in microfluidics have allowed the characterization of 

enzymological parameters for every single site variant of a single enzyme.  Detailed biophysical studies on 

individual proteins determining their stability have been cataloged in the Protherm database44, and while 

many site-specific mutations have been studied, high-throughput effects on protein stability are still lacking. 

The function and behavior of many proteins are now assayed via a DNA readout that allows for high-

throughput screens and selections, such as those generated by deep mutational scanning45 (DMS) or 

massively parallel reporter assays5. The dynamics, energetics, folding and function of many proteins and 

their variants are analyzed using data from MS – via amide hydrogen exchange, protease sensitivity, and 

sensitivity to modifications such as hydroxy-radical footprinting46.  Genetic screens identify the effects of 

sequence environmental variation on phenotype47. Finally, simulation and theory has investigated the effect 

of sequence variation on the energy landscape and protein folding48.  Independently, all of these 

experiments have provided us with important insight into the functioning of individual proteins and specific 

sequences. The time is ripe to synthesize these databases and develop predictive models. 

A synthesis center is needed to harmonize these diverse data sets, to reconcile issues in existing 

data sets, such as BRENDA, which were not designed for data mining and thus are currently not used for 

synthesis purposes, and to serve as a hub, bringing different communities together.  We believe that 

creation of such a synthesis center will stimulate the focus of researchers in their independent laboratories 

on some agreed upon systems and variants, both in experimental and computational studies, which, 

compared to the current uncoordinated approaches, would accelerate the overall mission. This could also 

result in the sharing of reagents such as DNA synthesis libraries, which would lower the overall cost of 

doing science and would better enable the science in individual labs. Thinking forward, this approach will 

create an iterative cycle where the computational studies will drive new experiments and vice versa.  The 

ML training models will help define the needed or missing data, which will lead to a focus on new 

experimental developments in these needed areas.  Thus, a synthesis center is both required to solve this 

grand challenge and will catalyze new and exciting science and methods development.   

The time is ripe for addressing this challenge in a sustainable and scalable fashion. In fact, starting 

with small steps, such as coordination of many existing databases and archives would help the community 

better utilize data for machine-learning purposes. The synthesis center should provide the infrastructure 

and resources to link the databases in a coordinated way. The center should serve as both the integration 

hub and a community to set the standards for databases, to provide the definition of what types of data are 

needed, and to define how they should be integrated and linked.  The ultimate goal would be a Federation 

of coordinating databases, which would serve as analytical tools for scientists worldwide.  We believe that 

the individual communities have the expertise in the needs for their specific databases - but a two-way 

interaction with the synthesis center is needed to define what other users may want to best utilize/reuse the 

data. For instance, for some raw data might be very useful, while for others more processed outputs and 

results are what are needed. The center should figure out when and how intermediate steps in processing 

should be available. The center should lower the existing barriers in harnessing the massive amount of 

data currently available in Supplementary Information files that are not data minable. Additionally, there 

ought to be an obvious trajectory for such datasets to mature into databases when appropriate. In sum, an 

effective synthesis center would serve as a ‘clearinghouse’ to provide resources for both the ‘buyers’ and 

‘sellers’, enhancing the individual components to be more than the sum of the parts and to accelerate 

science. 

By its very nature, a synthesis center that allows access to different types of data, data that is 

usually expensive and obtained at R1 Universities, is inherently democratizing. Just like was seen with the 

PDB, access to the hub enables science and scientists anywhere in the country to synthesize and learn 

from the data. The resulting science will be enhanced by having such a diversity of participants.  We believe 

that such a synthesis center will play a unique role in its ability to highlight the value of science and its global 

impact to the broader community. The larger communal discoveries enabled by synthesis – such as the 

recent developments in protein structure prediction – highlight the importance of the incremental steps in 



9 

science that come together to make big discoveries. In addition to accelerating science, the synthesis center 

can function as a hub for diversity activities by utilizing and highlighting scientists from diverse backgrounds 

at the hub level and reducing the burden and minority tax that so many suffer from having to do it all on 

their own at individual institutions. 

On the education front, to help train a future generation of biological scientists and encourage those 

with skills and interest in computation to work in the biological sciences, the synthesis center could develop 

online tutorials for machine learning that directly use examples drawn from the biomolecular sciences. We 

believe that even at the high school level, computer science classes could have examples drawn from 

biology. 

 

3.3 Genotype to Phenotype in the Environmental Context 

Both phenotype and genotype are environmentally determined. Evolutionary selection pressures select 

against phenotype, shaping genotype, which encodes phenotype49-52. A challenge then is understanding 

how, at the molecular and system’s level, genotype gives rise to phenotype in different environmental 

contexts53,54. For example, organisms undergo varying environmental conditions (salinity, pH, temperature, 

oxygen stress, starvation, etc.) - how do the “functional modules” that carry out various subcellular 

processes respond to these changes? Addressing this challenge would advance our understanding of how 

cells maintain cellular homeostasis, and which functional modules respond to different environmental 

conditions.  

   To address this challenge, practical questions need to be answered. (i) Can we use existing data 

to conceptualize how to identify functional modules? (ii) How do functional modules communicate with each 

other in a given environmental setting? And (iii) how modular are the functional modules and how might 

they change in a new environment? In addition, can we predict the changes in the functional modules, 

predicted in one environment, to another? 

 Indeed, it is likely easier to identify functional modules by comparing across environments, rather 

than identifying a functional module by studying a single environment. Environmental changes represent a 

perturbation to the organism and subcellular processes that can be used to classify groups of genes, 

proteins, and biochemical pathways that act in a coordinated fashion. Such approaches have been used to 

identify new heat shock proteins, for example. But the potential for much widespread identification of 

functional modules is large if existing data is harnessed and analyzed. 

 Addressing this challenge is difficult, as there is only one database, STRING, run by a consortium 

in Europe which may be useful as a starting point. However, the database that is needed for this challenge 

is to modify the database using feedback so that testable hypotheses can be generated. In addition, the 

database that is needed should include environmental information, which is important if one wants to 

understand mechanisms for adaptation. A database that integrates mutagenesis data, including information 

from different species, environments, is badly needed. Such a database must include 

biophysical/biochemical parameters, along with high-throughput mutagenesis (phenotype/fitness/growth 

rate) data. As part of this effort, statistical metrics to assess accuracy of data should be applied to all public 

databases so that the broader community can use them with confidence. 

The nature of challenges posed above clearly requires a broad spectrum of scientific expertise. To 

fruitfully attack outstanding problems requires expertise in data science, computer programs, and experts 

with biological understanding. Because at the core this requires synthesis, we also need theorists with 

broad experience as well. Because the expertise in a number of fields, starting with formulating answerable 

questions using the existing databases, is needed, creation of a Synthesis Center is the optimal choice. 

The Synthesis Center will address the following issues: (1) Curating the existing data sets and 

analyzing their appropriateness, especially the quality of the datasets, is the first task that would allow one 

to abstract general questions. (2) In order to accomplish this task, ideas in ML will be fruitful with the 

challenge that one needs to devise new neural network models. (3) The generation of models from data 

should have predictive power, which means one ought to come up with extrapolatable models. To 
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accomplish some of these goals, it is necessary to bring scientists, programmers, and statisticians to work 

together. 

Although certain goals can be accomplished, eventually the community will demand curated 

databases tying together this information on all scales (molecular, to gene expression, to phenotype). If the 

right database is created, it will lead to community standards for reporting quality of data, e.g., high-

throughput mutagenesis, beyond ‘coverage’, PHRED scores. To accomplish this task, one should convene 

community standards working groups in the context of a synthesis center. Such a working group must have 

members with expertise who may not nominally be associated with the Synthesis Center. 

 

3.4 Extrapolating across species 

Given the constraints of time and resources, the scientific community is restricted to studying a handful of 

model organisms55. Therefore, in order to obtain knowledge about the large biodiversity of species around 

the world, we will need to synthesize knowledge from these model organisms56 to then apply them to non-

model organisms57,58. More specifically, a grand-challenge for synthesis is (1) to identify what genotype-

phenotype relationships can be transferred from model organisms to non-model organisms56; (2) to identify 

the minimal set of experiments we would need to perform in non-model organisms for specific questions; 

(3) to disentangle the contributions of environmental selection from those of molecular constraints across 

a phylogenetic tree59. Synthesis of data/knowledge in this regard also has biomedical implications. For 

instance, knowledge synthesis across species can help identify organisms that might be more suitable 

models for specific human pathologies59-62. 

The scientific challenge in achieving this synthesis is in mapping what is ‘similar’ in model systems 

to what is cognate in the new one and identifying the novel elements of the new one. In other words, how 

do we determine which new elements will affect predictions of function/behavior made from the old system? 

This requires ontological mapping of elements from one system to another (biomolecular ‘ids’ via analyses 

such as homology; activities such as predicted reactions or growth rates, and measurements), and mapping 

of experimental conditions and designs effectively. 

 

3.5 Experimental error, combining models, and automated meta-analysis 

Quantification63-66, coupled cellular processes67-69, and repeated meta-analyses70 are an essential part of 

research in systems and synthetic biology. There is a community-wide challenge associated with each of 

these research aspects.  

First, for each type of experimental measurement, data can have random or systematic biases that 

are poorly characterized and not often considered during model training and testing71,72. This is a common 

challenge as almost all measurements in molecular and systems biology provide indirect proxies of the 

quantity-of-interest. Read counts are a numerical quantity that measure nucleic acid (DNA or RNA) 

concentrations73. Fluorescence levels are a numerical quantity that measure the concentration of a 

fluorescent dye or protein74. Cycle thresholds from RT-qPCR measurements are a numerical quantity that 

measures nucleic acid (DNA or RNA) concentrations75. While we often assume that these measurements 

yield proportional proxies for the quantities-of-interest, there are common scenarios where the relationship 

is not proportional (e.g., non-linear)76, including sub-sampling and detection limits. 

It’s possible to develop a model of the measurement process itself in order to understand and 

compensate for random and/or systematic biases. Such models can be expressed using probability theory 

and stochastic processes to quantify the flow of material and information through the multi-step 

experimental workflow used to generate measurements. Numerical techniques, e.g. Monte Carlo, can be 

used to simulate outcomes of the experimental measurements in order to determine their intrinsic variability. 

The development of these models would create a “calibration curve” that transforms measured numerical 

values into the actual quantities-of-interest (e.g. expressed as a probability distribution function) to take into 

account the biases of the experimental workflow.  
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Second, it remains a challenge to combine multiple model predictions together into a self-

consistent, seamless model, particularly when the individual models are formulated differently77-79. It also 

remains a challenge to explicitly take into account the uncertainty of each model prediction when feeding it 

into another model.  

One way to combine multiple model predictions together is to reformat all model outputs as a 

probability distribution function (PDF), which explicitly includes the error and uncertainty in the model’s 

predictions. Accordingly, one could then feed one model prediction as an input into another model prediction 

in terms of PDFs, which allows error and uncertainty to be processed and transformed as any other function. 

Third, computational modeling and analysis techniques are constantly evolving and improving29,80. 

New approaches are needed to ensure 100% reproducibility when applying older techniques on older 

datasets. Additionally, when new computational models and analysis techniques are developed, new 

approaches are needed to apply these new techniques on all prior datasets.  

New web-based platforms can be developed to enable: (i) upload of raw data; (ii) automated 

analysis of data with selectable workflows and options tailored for each type of data; (iii) generation of well-

labeled and analyzed dataset; (iv) visualizability of analyzed data; and (v) links to the complete record of 

data and analysis. The platform can be readily extensible and 100% reproducible using new modeling and 

analysis pipelines by taking advantage of virtual environments, source code revision repositories, and 

containerization, for example, combining Docker and GitHub. 

Overall, any web-based platform must be readily accessible to researchers who do not have 

experience with programming. There must be a clear incentive to upload data onto the platform, for 

example, by enabling improved data analysis. Convincing researchers to change their practices remains 

challenging. Rather than composing persuasive arguments, it would be better to develop “Show and Tell” 

educational examples that illustrate tangible and beneficial outcomes. This is a “smooth” way of convincing 

people to spend a bit of extra effort (automated) instead of defaulting to their “old way”. If an approach 

solves a community-wide problem and if it’s easy to carry out the approach, then it will be used. 

 

3.6 Other outstanding challenges 

At the workshop, 80 different challenges were proposed for MCB Synthesis, and the participants then voted 

on what they thought were the most exciting challenges. Thus, while the aforementioned represent the top 

five challenges, others are worthy of mention. They are: 

1. How can we integrate the 'epigenetics view' and the 'proteostasis view' of cellular aging? These 

two molecular perspectives on aging mechanisms are siloed - there are no bridges being built 

between these two views. With large amounts of data associated with each view, this question is 

primed for synthesis. 

2. Can we detect deviations from steady state and understand their impact on molecular and cellular 

biology? In the face of sampling statistics and other forms of noise, are there generalizable analysis 

methods that can help us identify from big data deviations of a system, or components of a system, 

away from steady state? Answering this question would allow for interesting phenomena to be 

automatically or rapidly identified in big data. 

3. Can we predict which proteins behave similarly in vivo and in vitro? MCB researchers are actively 

experimenting to answer this question. Can it be answered with a synthetic approach? 

4. How is the network of interactions (protein-protein; protein-DNA; protein-mRNA) wired under 

different cellular conditions? Cell environments and growth conditions are constantly changing. Can 

we take a synthetic approach to understand how these networks change under these different 

conditions? 

 

4. Recommendations 

 

4.1  A strategy for rapid impact 
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Two high-level strategies are needed for a synthesis center to have rapid impact. 

 

4.1.1 Focus on Class 1 and 2 problems. Class 1 problems represent synthesis efforts that would yield the 

most impact for the least input of center resources. Therefore, it is advised that for the first several years 

the center prioritizes support for Class 1 problems and some Class 2 problems. As the center delivers on 

these efforts, approaches and procedures to support synthesis will be refined and iterated upon, making it 

possible to efficiently deliver on more challenging Class 3 problems. As the center matures, the portfolio of 

synthesis challenges should shift to a larger proportion of Class 2 and 3 problems.  

Class 1 problems (which have data and modeling tools ‘readily’ available) supported by the Center 

must (i) represent a threshold of effort and expertise that is beyond the capabilities of a super-majority of 

MCB labs, and (ii) not represent a logical, tractable extension of ongoing research projects within a working 

group member’s lab. These requirements will ensure that center resources are used for community-wide 

synthesis, and not for the benefit of one particular lab. 

 

4.1.2 Take an ‘Agile’ approach to Community-wide Synthesis. In the 1970’s it was common for software 

firms, such as IBM, to spend years and large amounts of resources developing software for users, only to 

find it didn’t meet user needs and therefore wasn’t widely used. This top-down software development 

approach has been largely replaced by an ‘Agile’ workflow, which involves an ‘iterative approach to project 

management and software development that allows teams to deliver value by responding to their 

customers’ needs faster. Instead of betting everything on a "big bang" launch, an agile team delivers work 

to users in small, but consumable, increments.’ (From Atlassian.com) 

 Software development offers lessons for effectively supporting synthesis research efforts. There 

are innumerable data sets, databases, computational and theoretical tools that can be utilized for synthesis. 

It is a natural tendency to think that all these diverse data and tools should be brought together under one 

umbrella - either through a unified database, or software that ties all these analysis tools together. The 

history of software development suggests this costly, upfront approach is ill-fated. Instead, technical support 

of synthesis should meet only the goals of the communities of scientists who are addressing specific, 

focused questions in an iterative and timely process with technical support staff. The development of 

computational methodologies or processed datasets for synthesis should be limited to those needed to 

address specific synthesis questions. This approach will avoid a synthesis center squandering resources 

on a top-down approach that might not end up widely used. 

 As diverse synthesis efforts are supported over several years, it will become evident which data 

and tools have wide-spread use. Only at this point should a synthesis center invest strategically in creating 

general databases and software tools.  

   

4.2  Structure of a Synthesis Center 

4.2.1 Leadership Team. A leadership structure involving a director, co-director, assistant directors and their 

staff teams is a minimum requirement for a Synthesis Center. The director, with the aid of the Scientific 

Advisory Board, sets the vision for the center. The co-director handles the day-to-day operations, and 

oversees assistant directors who lead teams of (i) technical staff; (ii) education and outreach, and (iii) event 

coordination. 

 

4.2.2 Scientific Advisory Board. A scientific advisory board should be created consisting of a diverse team 

of scientists who serve three-year terms and provide input on strategic planning, review requests for 

support, and make recommendations for programmatic focus to the Leadership Team. These board 

members represent the diverse scientific and computational drivers relevant to community-wide synthesis 

efforts. 
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4.2.3 Technical Staff. Technical staff are a pool of PhD trained scientists, data scientists, and 

software/database engineers that are matrixed out to support working groups, catalyst meetings, and 

Center postdoctoral Fellows in their synthesis efforts. ‘Matrixing out’ refers to matching technical staff with 

the needs of particular synthesis projects. A technical staff member will typically support up to four synthesis 

projects simultaneously, with project commitments lasting between a few weeks to a few months. Technical 

staff expertise of value to the MCB community are machine learning, statistics, data science, bioinformatics, 

computational biology, and molecular and theoretical modeling.  

 

4.2.4 Academic Consultants. Matching the right data and tools to an impactful question is often a barrier to 

synthesis. When working groups, technical staff, and the scientific advisory board are unable to make this 

match, a working group will be able to reach out to academic consultants that can serve as either ‘Data 

guides’ or ‘Tool guides’ and are financially compensated for their time. A Data Guide is an academic 

(professor, postdoc, or graduate student) who has expert knowledge in a particular class of data who can 

help a working group find the best data to use, provide working knowledge about that data, or match them 

with another expert who can do this. A Tool Guide, similarly, is an academic who has expertise in 

computational or theoretical tools that technical staff or working groups do not possess, but a working group 

requires to make progress. Critically, these consultants are not members of a working group, nor 

collaborators on the project. They are consultants, who help make these matches to data and tools for a 

short, predefined time (typically less than 10 hours of consulting time). For this reason, they are not 

identified as authors on resulting publications. Conflicts of interest arise if a person takes on the dual role 

of consultant and collaborator on a project - as this can be viewed as “double dipping”, getting extra pay for 

scientific research that the consultant is also academically benefitting from in terms of publications. To avoid 

this potential conflict of interest, regular auditing should be carried out of publication outputs by consultants. 

 We recognize that paid academic consultants are a foreign concept to academic research, as many 

scientists are motivated by a love for knowledge and discovery. However, we must also recognize that 

academics have many demands on their time, and those academics with the most useful data or tool 

knowledge will likely get multiple requests for consultation from working groups. Therefore, to motivate 

over-stretched academics, we believe financially remunerating academic consultants will accelerate 

synthesis research and discovery. 

 

4.2.5 Virtual components. Many aspects of collaboration, education and outreach can be done remotely, 

as has been demonstrated by scientists during the Covid pandemic. Virtual components should be carried 

out where it is clear that such remote work will accelerate synthesis efforts. For example, virtual meetings 

can be held before and after an in-person catalyst or working group meetings to maximize the efficiency 

and impact of the in-person meetings. Additionally, outreach and education efforts can maximize their 

impact through hybrid meetings, archived video recordings, and materials that are made publicly available. 

 

4.2.6 Multiple meeting sites. As a national and international resource, a Synthesis center should support 

domestic off-site working group and catalyst meetings when such off-site meetings have a clear benefit that 

cannot be provided by hosting a meeting at the site of the Synthesis center. This is a more expensive 

option, including supporting travel of center staff to the site. Therefore, budgeting will factor into the number 

of such off-site meetings in a given year. 

 

4.2.7 Education and Outreach Assistant Director.  Education and outreach are an essential part of a 

synthesis center. This Assistant Director will coordinate and plan education and outreach efforts of the 

center that are described in Section 4.3. 

 

4.2.8 Ad-hoc reviewers. When a request for center resources involves expertise outside the knowledge of 

the scientific advisory board, ad hoc reviewers should be utilized to fill these knowledge gaps. 
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4.2.9 Scientific Communication. Novel means of supporting communication of Center efforts and results 

should be considered. A synthesis center could leverage journalism majors interested in scientific 

communication to write news pieces and center newsletters. This would provide an educational opportunity 

for students as well as communicate the activities and results of the center 

 

4.2.10 Center Postdoctoral Fellows. The center should support a new cohort of around five postdocs each 

year whose projects focus on the synthesis of existing MCB data. These postdocs would receive three 

years of support from the Center, and be independent. Meaning that they are free to choose the research 

projects they work on, and are not under the employ of a professor. They will select three mentors from 

across the world who will advise them scientifically and on their career. Postdoc applications to the center 

will require proposal of a synthesis project. At steady state, around 15 postdocs will be active in the center, 

providing a community within which they can work and synergize. Postdocs are free to choose whether 

they take part in working group and catalyst meetings. 

 

4.2.11 Graduate Fellowship lines to support Community Synthesis. A synthesis center should leverage the 

resources of the host university to support synthesis. An effective way to do this is to support the equivalent 

of a ‘Teaching Assistantship’ in which graduate students in Statistics, Machine Learning, Bioinformatics, 

Genomics, Computational Biology, and Biophysics are paid to be assistants mentored under the Technical 

Staff to support synthesis efforts of working groups, catalyst meetings, and postdoctoral fellows. As in 

conventional TA lines, students supported by this mechanism would be expected to provide, on average, 

20 hours of work each week. This would have the added benefit of training the next generation of scientists. 

 

4.2.12 Post-bacs to support Community Synthesis. Another mechanism to leverage and train young 

scientists is to provide two-year post-baccalaureate positions in which scientists with relevant bachelor’s 

degrees would be mentored by Technical staff to work on supporting synthesis efforts of working groups, 

catalyst meetings, and postdoctoral fellows. This would provide these post-bacs with real-world research 

experience and make them more competitive for graduate school, medical school, or industry. 

 

4.3 Activities of a Synthesis Center 

 

4.3.1 Working Groups. A highly effective mechanism for Synthesis are working groups, and have been 

used in other NSF supported centers. This is a diverse group of scientists (typically less than 15) that come 

together two-to-three times a year to collaborate on a big question in MCB that can be addressed through 

synthesis. These working groups are investigator led, and apply for support from the center for their 

activities. Importantly, working groups can be proposed and led by postdocs. Before obtaining support, 

applicants must demonstrate that there is sufficient data available to address the synthesis question, and 

that there are computational methods available or that can be developed during the time period the working 

group exists.  

 

4.3.2 Catalyst Meetings. These are one-time meetings that bring together a diverse group of scientists to 

identify grand-challenges that can be addressed by synthesis, identify data needed to address that 

challenge as well as analysis tools, and build networks of scientists to address the challenge. Catalyst 

meetings result in potential future efforts for the synthesis center through working groups, postdoctoral 

fellows, and other activities at the center. Proposal’s for catalyst meetings can come from graduate 

students, postdocs, or faculty. 

 

4.3.3 Center Postdoctoral Fellows. As described in Section 4.2, a cohort of 15 postdocs would be supported 

by the center. These fellows should be selected through a national competition in which applicants submit 
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a research project centered on MCB synthesis. The advisory board would select the most meritorious 

applicants. Postdoctoral fellows would thus form one of the drivers for synthesis. 

 

4.3.4 Sabbaticals. Faculty sabbaticals should be supported to allow faculty to spend time at the center to 

give them time to focus on starting a synthesis project, or continue an ongoing synthesis project already 

supported by the center. Sabbatical applications should provide a plan on how the faculty member will use 

the time and center resources to move their synthesis efforts forward. 

 

4.3.5 Short-term visitors. Scholars from around the country and world should be invited to visit the center 

for short periods (2 weeks to 3 months) to carry out synthetic research that leverages center resources. 

These visitors can be graduate students through full professors. The diversity of expertise and research 

efforts of short-term visitors will contribute to a vibrant intellectual environment at the center. 

 

4.3.6 Community Competitions. There are likely to be times when Catalyst and Working Groups put 

together data and synthesis questions that may be amenable to simple, rapid innovative solutions. In such 

situations, the center should support “community competitions”, which are virtual (or hybrid) events with a 

well-defined goal where individuals or teams can enter to win money or an award if they demonstrate they 

can achieve the goal. Similar to “hack-a-thons”, these community competitions would involve individuals or 

teams competing against each other. 

 

4.3.7 Journalist in residence. Science and society intersect at a synthesis center. As a place of scholarship 

studying cutting-edge questions in MCB that can have relevance to society, a journalist in residence 

program should be arranged where journalists can spend up to 3 weeks at the center learning the latest 

science that they would be expected to report on through various media: print, radio, TV, or internet. 

 

4.3.8 Philosopher in residence. Philosophers of Science have a unique opportunity to study MCB research 

at a unique time in its history, where the scholars doing the science can gather diverse data from multiple 

labs to get greater insight. Therefore, it is suggested a Philosopher in residence program be instituted where 

they are able to observe and take part in the various center activities to understand how MCB Synthesis 

research is done. 

 

4.3.9 Open Science. As a community resource, a synthesis center should follow best practices for early 

stage, open science. In this case, this means the results of catalyst and working group meetings should be 

posted as soon as possible. Datasets and databases should be posted as they are created (before 

publication) to allow other scientists to start to analyze them.  

 

4.3.10 Reproducible Science. The synthesis center should support reproducible science standards by 

requiring best practices in the research it supports. This includes the use of Jupyter Notebooks to run code, 

GitHub to provide source code and examples, Docker containers to allow anyone to run code remotely, 

data provenance standards - such as providing doi’s for new compiled datasets, and other such 

approaches.  

 

4.3.11 Classes. Short courses on different topics should be offered, including Introductory Python 

programming; Introduction to Jupyter Notebooks and GitHub; Introductory and Intermediate Machine 

Learning using Scikit-Learn; Experimental methods for modelers; Computation for Experimentalists; 

Molecular Modeling; A responsive approach to community needs will result in other courses. 

  

4.3.12 Pipeline from undergraduate to graduate school. Summer internships for undergraduates from 

primarily undergraduate institutions and Minority Serving Institutions could help increase the number of 
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under-represented minorities entering STEM graduate studies. These internships could see these 

undergraduates be introduced to computation and synthesis and carry out research. 

 

4.3.13 Scientific Communication. The center should support the training of its members in effective scientific 

communication. This includes across fields, within working groups and catalyst meetings. And in 

communicating with the public. To achieve this, when a new catalyst meeting or working group is approved 

by the center, the professional facilitator/management trainer will meet with the leaders of each to introduce 

them to scientific communication techniques when dealing with a diverse team. The trainer will also help 

them come up with plans for effective management and timelines. 

 

4.3.14 Compendium of Best Practices. As a national resource, the center can promote and make standard 

best practices in data, computation, and modeling for synthesis. Therefore, an effort should be made up-

front to build a compendium of best practices for these various aspects of MCB synthesis. This can be 

made part of the various activities of the center. 

 

4.3.15 Outreach. By following the recommendations above, a number of outreach goals will be achieved, 

including the training of undergraduates, graduates, postdocs, as well as classes for cross-disciplinary 

training and facilitator led educational efforts on scientific communication. The center should involve 

minority serving institutions and primarily undergraduate institutions to engage them in synthesis research. 

Activities can include both virtual and in-person summer camps on big data and how computation is solving 

long standing challenges in MCB. Summer internships for undergraduates from these institutions would 

allow them to get hands on experience with synthetic research. Outreach to the public is important too. 

Popular science lectures, coding camps, and illustrating how biological data and computation are coming 

together to create advances that benefit society are outreach activities worth pursuing. 

 

4.3.16 Federated Database Creation. We anticipate that a natural evolution will occur within a center 

regarding data. Initial synthesis efforts will involve creation of specific datasets for answering specific 

questions. As time progresses it will become apparent that some datasets or resources are in much higher 

demand than others. In those cases, it may accelerate synthesis to create a ‘Federated’ database, which 

pulls information from existing, publicly available databases to make access to relevant, diverse data more 

dynamic and easy. A federated database uses an API to pull information from other databases, and 

presents the information to the end user in an easy to use format. 

 

 

5. Summary 

Many areas of science are now making progress through the use of large data sets and computation. The 

Molecular and Cellular Biology community is primed for rapid and sustained scientific discovery over the 

next decade if the National Science Foundation provides the infrastructure to enable diverse groups of 

scientists to efficiently bring together existing large-scale data sets with domain experts in computation and 

theory. The community can only go after the grand challenges in this report through community-wide efforts 

as no individual lab in the United States possesses the diverse expertise and resources to pursue them. A 

synthesis center, well designed and implemented, will foster, coordinate, and accelerate these efforts 

through the strategic activities we have recommended. This will benefit scientific research, scientific training 

and education, and make the United States more economically competitive. Questions that were not 

hitherto able to be addressed have the potential to be solved. Engaging scientists at diverse career stages, 

disciplines, backgrounds and outreach and education to the general public will create a better trained STEM 

workforce and scientifically literate society. Some of the basic research discoveries made through an MCB 

synthesis center will undoubtedly have impact on economically important sectors such as the life sciences, 

medicine, biotechnology, and artificial intelligence. Thus, now is the time for the National Science 
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Foundation’s Molecular and Cellular Biology Division to support a synthesis center that will catalyze US 

scientific research with results that will reverberate around the world. 
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8. Appendix 1: Participants at Synthesis Workshop 

 

Adam Arkin, Professor, University of California Berkeley 

Adam Arkin is an expert in computational biology who created the US DOE systems biology Knowbase, 

KBase, that aims to enable researchers to predict and ultimately design biological function through a 

community shared platform. 

Recent highlights: 

● A method for achieving complete microbial genomes and improving bins from metagenomics data. 

PLoS Computational Biology, 2021. 

● KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature 

Biotechnology, 2018. 

 

Minkyung Baek, Postdoctoral Scholar, University of Washington 

Minkyung Baek has created a machine learning model that accurately predicts the folded structures of 

proteins while working in David Baker’s lab. 

Recent highlights: 

● Deep learning and protein structure modeling. Nature Methods, 2022. 

● Accurate prediction of protein structures and interactions using a three-tract neural network. 

Science, 2021. 

 

Wout Bittremieux, Postdoctoral Scholar, University of California San Diego 

Wout Bittremieux develops algorithmic solutions and machine learning methods to analyze MS-based 

proteomics and metabolomics data to attempt to solve fundamental biological questions. 

Recent highlights: 

● A learned embedding for efficient joint analysis of millions of mass spectra. Nature Methods, 2022. 

● Fast open modification spectral library searching through approximate nearest neighbor indexing. 

Journal of Proteome Research, 2018. 

 

Atreya Dey, Graduate Student, University of Texas Austin 

Atreya Dey uses computational biophysics to explore the packing structures and defects of flexible 

polymers, including chromosomes. 

Recent highlights: 

● Predicting the organization of mitotic chromosomes using the generalized Rouse model. 

Biophysical Journal, 2020. 

● Toroidal condensates by semiflexible polymer chains: Insights into nucleation, growth and packing 

defects. The Journal of Physical Chemistry B, 2017. 

 

Ken Dill, Professor, Stony Brook University 

Ken Dill specializes in theoretical and computational studies of protein homeostasis. 

Recent highlights: 

● Nanoscale catalyst chemotaxis can drive the assembly of functional pathways. The Journal of 

Physical Chemistry B, 2021. 
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● Accelerating protein folding molecular dynamics using inter-residue distances from machine 

learning servers. Journal of Chemical Theory and Computation, 2022. 

 

Meghan Driscoll, Postdoctoral Scholar, University of Texas Southwestern 

Meghan Driscoll works in cellular imaging and the application of data science to cellular imaging to 

determine how cellular shape affects migration and cellular dynamics. 

Recent highlights: 

● Robust and automated detection of subcellular morphological motifs in 3D microscopy images. 

Nature Methods, 2019. 

● Spatiotemporal relationships between the cell shape and the actomyosin cortex of periodically 

protruding cells. Cytoskeleton, 2015. 

 

Judith Frydman, Professor, Stanford University 

Judith Frydman advances various omics techniques and applies them to protein biogenesis. 

Recent highlights: 

● Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature, 2022. 

● Differentiation drives widespread rewiring of the neural stem cell chaperone network. Molecular 

cell, 2020. 

 

Arjun Krishnan, Assistant Professor, Michigan State University 

Arjun Krishnan is an expert in combining large-scale datasets with machine learning to gain biological 

insights into a variety of living systems. 

Recent highlights: 

● A computational framework for genome-wide characterization of the human disease landscape. 

Cell Systems, 2019. 

● Robust normalization and transformation techniques for constructing gene coexpression networks 

from RNA-seq data. Genome Biology, 2022. 

 

Liana Lareau, Assistant Professor, University of California Berkeley 

Liana Lareau combines next-generation sequencing and machine learning to discover biological insights. 

Recent highlights: 

● Coverage-dependent bias creates the appearance of binary splicing in single cells. eLife, 2020. 

● Accurate design of translational output by a neural network model of ribosome distribution. Nature 

Structural & Molecular Biology, 2018. 

 

Travis La Fleur, Graduate Student, Penn State University 

Travis La Fleur models gene expression using biophysical modeling and bioengineering data. 

Recent highlights: 

● Automated model-predictive design of synthetic promoters to control transcriptional profiles in 

bacteria. bioRxiv, 2021. 

 

Steffen Lindert, Associate Professor, Ohio State University 

Steffen Lindert predicts protein structures by using various datasets, including MS and protein footprinting 

data, and simulation. 

Recent highlights: 

● Accurate protein structure prediction with hydroxyl radical protein footprinting data. Nature 

Communications, 2021. 

● Utility of covalent labeling MS data in protein structure prediction with Rosetta. Journal of Chemical 

Theory and Computation, 2019. 
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Zan Luthey-Schulten, Professor, University of Illinois Urbana-Champaign 

Zan Luthey-Schulten incorporates various data sets into the computation of whole-cell modeling. 

Recent highlights: 

● Generating chromosome geometries in a minimal cell from cryo-electron tomograms and 

chromosome conformation capture maps. Frontiers in Molecular Biosciences, 2021. 

● Generalized correlation-based dynamical network analysis: a new high-performance approach for 

identifying allosteric communications in moleculary dynamics trajectories. Journal of Chemical 

Physics, 2020. 

 

Shaun Mahoney, Associate Professor, Penn State University 

Shaun Mahoney uses neural networks to make data-driven discoveries in transcription factor binding and 

gene regulation. 

Recent highlights: 

● Domain adaptive neural networks improve cross-species prediction of transcription factor binding. 

Genome Research, 2022. 

● An interpretable bimodal neural network characterizes the sequence and preexisting chromatin 

predictors of induced transcription factor binding.  Genome Biology, 2021. 

 

Serghei Mangul, Assistant Professor, University of Southern California 

Serghei Mangul studies gene expression and has analyzed public omics data for reusability in a variety of 

forms. 

Recent highlights: 

● Integrating big data computational skills in education to facilitate reproducibility and transparency 

in pharmaceutical sciences. Journal of the American College of Clinical Pharmacy, 2021. 

● Improving the usability and archival stability of bioinformatics software.  Genome biology, 2019. 

 

Susan Marqusee, Professor, University of California Berkeley 

Susan Marqusee examines protein folding through biophysical and MS experimentation. 

Recent highlights: 

● Exploring the evolutionary history of kinetic stability in the α-lytic protease family. Biochemistry, 

2021. 

● Site-specific ubiquitination affects protein energetics and proteasomal degradation. Nature 

Chemical Biology, 2020. 

 

Wallace Marshall, Professor, University of California San Francisco 

Wallace Marshall employ at integrated combination of techniques, to understand how cells solve geometric 

engineering problems. 

Recent highlights: 

● Towards computer aided design of cellular structure. Physical Biology, 2020. 

● Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays. Nature 

Physics, 2020. 

 

Kenneth Matreyek, Assistant Professor, Case Western Reserve University 

Kenneth Matreyek develops and deploys massively parallel assays to discover protein function and 

adaptation to viruses. 

Recent highlights: 

● Integrating thousands of PTEN variant activity and abundance measurements reveals variant 

subgroups and new dominant negatives in cancers. Genome Medicine, 2021. 
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● An improved platform for functional assessment of large protein libraries in mammalian cells. 

Nucleic Acids Research, 2019. 

 

Matteo Mori, Postdoc, University of California San Diego 

Matteo Mori uses multi-level models and the analysis of omics data to connect gene expression and cellular 

phenotypes. 

Recent highlights: 

● Disruption of transcription-translation coordination in Escherichia coli leads to premature 

transcriptional termination. Nature Microbiology, 2019. 

● On the optimality of the enzyme-substrate relationship in bacteria. PLOS Biology, 2021. 

 

Ed O’Brien, Associate Professor, Penn State University 

Ed O’Brien integrates bioinformatics, chemistry, and simulations to better understand the translation 

process. 

Recent highlights: 

● Combinations of slow-translating codon clusters can increase mRNA half-life in Saccharomyces 

cerevisiae. PNAS, 2021. 

● Ribosome elongation kinetics of consecutively charged residues are coupled to electrostatic force. 

Biochemistry, 2021. 

 

Kim Reynolds, Associate Professor, University of Texas Southwestern 

Kim Reynolds creates statistical models that can explain, predict, and design cellular behaviors in the lab. 

Recent highlights: 

● Structurally distributed surface sites tune allosteric regulation. Elife, 2021. 

● A simplified strategy for titrating gene expression reveals new relationships between genotype, 

environment, and bacterial growth. Nucleic Acids Research, 2020. 

 

Gabriel Rocklin, Assistant Professor, Northwestern University 

Gabriel Rocklin uses molecular modeling and experimental techniques to study protein biophysics. 

Recent highlights: 

● Dissecting the stability determinants of a challenging de novo protein fold using massively parallel 

design and experimentation. BioRxiv, 2021. 

● Global analysis of protein folding using massively parallel design, synthesis and testing. Science, 

2017. 

 

Andrej Sali, Professor, University of California San Francisco 

Andrej Sali develops computational tools that integrate diverse experimental data to study the structure and 

dynamics of assemblies. 

Recent highlights: 

● Integration of software tools for integrative modeling of biomolecular systems. Journal of Structural 

Biology, 2022. 

● Bayesian metamodeling of complex biological systems across varying representations. PNAS, 

2021. 

 

Howard Salis, Associate Professor, Penn State University 

Howard Salis combines biophysical and kinetic models with next-generation sequencing data of gene 

expression. 

Recent highlights: 
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● Systematic quantification of sequence and structural determinants controlling mRNA stability in 

bacterial operons. ACS Synthetic Biology, 2021. 

● The synthesis success calculator: predicting the rapid synthesis of DNA fragments with machine 

learning. ACS Synthetic Biology, 2020. 

 

Premal Shah, Assistant Professor, Rutgers University 

Premal Shah combines bioinformatics and chemical kinetic modeling to study transcription and translation. 

Recent highlights: 

● Promoter-sequence determinants and structural basis of primer-dependent transcription initiation 

in Escherichia coli. PNAS, 2021. 

● XACT-seq comprehensively defines the promoter-position and promoter-sequence determinants 

for initial-transcription pausing. Molecular Cell, 2020. 

 

Eugene Shakhnovich, Professor, Harvard University 

Eugene Shakhnovich combines molecular biophysics theory and data with cellular properties on a broad 

range of topics. 

Recent highlights: 

● Effect of RNA on morphology and dynamics of membraneless organelles. The Journal of Physical 

Chemistry B, 2021. 

● Validation of DBFOLD: an efficient algorithm for computing folding pathways of complex proteins. 

PLOS Computational Biology, 2020. 

 

Ian Sitarik, Graduate Student, Penn State University 

Ian Sitarik uses a combination of computational protein models and experiments to understand the 

fundamental principles driving protein folding and function. 

Recent highlights: 

● Subpopulations of soluble, misfolded proteins commonly bypass chaperones: how it happens at 

the molecular level. BioRxiv, 2021. 

● Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble 

and non-functional. BioRxiv, 2021. 

 

Dave Thirumalai, Professor, University of Texas Austin 

Dave Thirumalai performs theoretical and computational synthesis of diverse molecular biology processes 

and integrates Hi-C data. 

Recent highlights: 

● Multiscale coarse-grained model for the stepping of molecular motors with application to kinesin. 

Journal of Chemical Theory and Computation, 2021. 

● Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein 

Science, 2020. 

 

Bin Zhang, Associate Professor, Massachusetts Institute of Technology 

Bin Zhang uses biophysical modeling techniques to study chromatin structure in atomistic detail. 

Recent highlights: 

● Multiscale modeling of genome organization with maximum entropy optimization. Journal of 

Chemical Physics, 2021. 

● Data-driven polymer model for mechanistic exploration of diploid genome organization. Biophysical 

Journal, 2020. 
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9. Appendix 2: Workshop schedule 

 

Saturday, March 12, 2022 

11 am to 4 pm EST 

● 11 am: Welcome and Overview 

● 11:30 am: Breakout 1–Identifying Grand Challenges 

● 12:25 pm: Breakout 2–Identifying Grand Challenges 

● 1:15 pm: Voting on Most Important Challenges 

● 1:30 pm: Lunch Break 

● 2:00 pm: Breakout 3–Diving Deeper - Developing Grand Challenges 

● 3:20 pm: Next Steps and Closing 

 

Sunday, March 13, 2022 

11 am to 4 pm EST 

● 11 am: Welcome and Overview 

● 11:20 am: Breakout 1–Identifying Barriers to Synthesis 

● 12:15 pm: Breakout 2–Identifying Solutions to Enable Synthesis 

● 1:05 pm: Lunch 

● 1:35 pm: Breakout 3–Diversity, Training, and Broader Impacts 

● 2:10 pm: Full Report Backs with Feedback 

● 3:05 pm: Breakout 4–Incorporating Feedback 

● 3:40 pm: Next Steps and Closing 
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